If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2=70
We move all terms to the left:
2y^2-(70)=0
a = 2; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·2·(-70)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{35}}{2*2}=\frac{0-4\sqrt{35}}{4} =-\frac{4\sqrt{35}}{4} =-\sqrt{35} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{35}}{2*2}=\frac{0+4\sqrt{35}}{4} =\frac{4\sqrt{35}}{4} =\sqrt{35} $
| 14u=72+5u | | 4/y+2=7 | | 3(2h+1)-7=50 | | 90+3p+57=180 | | 2/5h-7=12/5-2+3 | | 2c=124 | | -9(x+6)=-207 | | -2(m+5)=22 | | 3m+8=m² | | 7(e+2)=35 | | -2(5+7x)+15=-90 | | 2t+4t+78=180 | | -6x+7(1-x)=-4(x-3) | | d/5+7=43 | | 2x-2(x-6)=64 | | 2y+95+35=180 | | 51/2x+11=44 | | p-15=-17 | | 2v+45+67=180 | | x-(x-6)=64 | | -3(5x+2)=54 | | 5x+7-7x+1=12 | | 6=-2-2n | | (2x+5)+(3x-15)+5x=180 | | 5s+92+38=180 | | 5x7-7x+1=12 | | X1+6x+4=67 | | N+20=n+2 | | 8.2(6x-3)=7(7x-2.1) | | 8x-7=x+16=18 | | 9.4n+2.12=9.9n+5.72 | | 2x+(312.5/x)=50 |